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VARIATIONAL BOUNDS ON DARCY'S CONSTANT

James G. Berryman
Lawrence Livermore National Laboratory
P. 0. Box 808, L-201
Livermore, CA 94550
Abstract
Prager's variational method of obtaining upper bounds on the fluid
permeability (Daréy's constant) for siow flow through porous media is
reexamined. By exploiting the freedom one has in choosing the trial stress
distributions; several new results. are derived. One result is a phase
interchange relation for permeability; when the fluid-phase and particle-phase
are interchanged fbr a fixed geometry, we find an uppér bound on a linear
combination of the complementary permeabnilities. Another result is a proof of
the monotone properties of the bounds. The optimal two-point bounds from this

class of variational principles are evaluated numerically and compared to

exact'resu]ts of low density expansions for assemblages of spheres.



1. Introduction

Darcy's law [1] states that, when a viscous fluid moves slowly and
steadily through a porous medium, the macroscopic flux (fluid volume crossing
a unit cross-sectional area per unit time) is directly proportional to the
pressure difference across the material and inversely proportional both to ijts
thickness and to the viscosity of the'fluid. The direction of flow is
opposite to that of the positive pressure difference. The constant of
proportionality in Darcy's law is called the fluia permeability or Darcy's
constant. The law is modified slightly if gravity influences the fluid motion
as it did in-Darcy's original experiments; then the driving force is not
simply the pressure difference but a linear combination of the forces due to
gravity ana pressure differential. For simplicity, gravitational effects will
be neglected in the present discussion.

Darcy's law is a linear proportionality between the macroscopic flux ana .
pressure gradient. This macroscopic relationship can be derived from the
microscopic (Siokes) equations for slow fiow of an incompreséihle fluid
through a vessel of arbitrary shape with no slip between fluid and vessel at
points of contact. (The terms “macroscopic" and "microscopic" are being used
somewhat loosely here to distinguish between the two relevant length scales.)
Derivations of Darcy's law using averaging methods have been given by Poreh
and Elata [2] and by Neuman [3] while homogenizatfon theory was used in the
derivation by Keller [4]. The feature of this problem which makes it both
especiai]y interesting and especially difficult is tﬂe fact that, although
only classical physics is involved at both the macroscopic and microscopic
length scales, the macroscopic law of transport is not of the same form as the

microscopic flow equations. The permeability is therefore a meaningful



macroscopic concept without a direct microscopic analog. By Eontrast, the
dielectric constant in Maxwell's equations is meaningful both at the
microscopic levél and at the macroscopic level for composites. Only when we
consider much smaller (i.e. atomic) length scales does a similar change in the
form of the relevant equatioﬁs occur.

One early anq fairly successful attempt to estimate the macroscopic
permeability for flow through a random porous aggregate is the work of
Brinkman | 5]. By postulating a modified form of Darcy's law which might be
expected to apply when the flow field is nonuniform, Brinkman was able to
perform a single-site scattering calculation for flow around a spherical
inclusion in a porous medium and then use this result to obtain an effective
medium estimate of the permeabi}ity as a function of porosity. For very low
densities of solid particles, Brinkman's approach gives the leading o
corrections to the Stokes drag on a spherical particle in the presence of
other particles [6-8]. More recently some exact calculations of the
permeability for periodic arrays of spheres have_béen performed by Zick and
Homsy [9] and by Sangani and Acrivos [10]. A1l of these efforts are important
benchmarks in the general theory of permeability but they fall short of
helping us to estimate the permeability of an arbitrary porous random
aygregate of particles.

Prager [11] introducea a very general variational principle.for porous
flow based on the concept of minimum energy dissipation. Upper bounds on
permeability may be obtained from this minimum principle if certain
statistical information concerning the topology of the pore space is
available. Doi [12] introduced another variational principle for bounds on
permeability but this approach does not have the flexibility inherent in
Prager's method. Torquato [13] was the first to apply Prager's ideas to

packiqgs of penetrable and impenetrable spheres for which the
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" reduired statistical correlation functions are known for large densities of -
particles. The present author repeated some of these calculations
independently [14] and subsequently discovered that some different choices of
trial stress distribution led to significantly different upper bounds on
Darcy's constant [15]. The hope of obtaining realistic estimates of
permeability when the required spatjal correlation functions of an arbitpary
porous specimen are known [16] femainé unfulfilled at. present but the progress
which has been ma&e will be reported here.

Section 2 presents the variational principle which Teads to bounds on
permeability. Section 3 explores the possible choices of trial stress
distribution. Section 4 uses the freedom in choice of stochastic function in
the tfiﬁl stress distribution to derive a phase 1nterch$nge relation for
permeability. Section 5 discusses optimal upper bounds on permeability using
only two-point spatial correlation functions which have been derived using the
freedom in choice of deterministic function in the trial stress distribution.

Section 6 illustrates the monotone properties of the bounds and summarizes our

conclusions.



2. Minimum Energy Dissipation

In this section, we will present a complete derivation of the variational
principle to be used in the remainder of the paper. The initial line of
argument parallels that of the elastic problem as presented by Courant and
Hilbert.L]7]. The conclusion of the derivation-has been alluded to by Prager
[11] and by Beran [18]; however, since some questions have been raised
concerning a choice of normalization in the formulation [19,20], it will prove
beneficial to include a full discussion here.

Equations for the Stokes flow of a viscous fluid through an arbitrary

vessel of total volume @ take the form

“ij, j* 0 fori, j=1,2,3 (2.1)

where the stress tensor is

nijg'P‘i‘-j"‘Uijs_ (2.2)
the local fluid pressure is p, ana the viscosity stress tensor is

with u the viscosity of the fluid. A subscript following a comma inaicates

a partial derivative. The local fluid velocity is v, and if the fluid is

assumed to be incompressible



v, .=0. (2;4)

The summation convention is assumed in both (2.1) and (2.4). The boundary

conditions associatea with (2.1) and (2.4) are the no slip condition

vy = 0 on rl (2.5)

at interior points where the fluid touches the vessel and the stress matching

condition

at points on the external boundary of the volume 2. The fluid volume being

consiaered is completely contained in the volume 2 whose surface is r =

r.ur_. If the applied stress B, 1is not uniformly hydrostatic on

I E iJ
rE, then fluid will flow into af. through parts of the surface rE_and out

of a, through other parts of I

For simplicity, we will generally assume a slab geometry; The vessel is
then a porous material lying between two parallel planes o}thogonal to the
z-axis. The applied stress takes the form of a uniform pressure p_ on one
plane located at z = -aZ/2 and p, = p_ + AP on the other at z =
AZ/2. If the thickness of ihe slab is aZ, then the pressure gradient is
:—;. The total volume @ for the slab is infinite. The discussion
which follows is phrased as if 8 is finite with the understanding that the
limit 2 » » will be taken at the end of the calculatfons.

Now we wish to reformulate (2.1)-(2.6) in terms of a variational

principle. To do so, we introduce the quadratic form




. . 3 '
Eqg. (2.7) gives the rate of energy dissipation in the fluid per unit total
volume [21j. Now if @ and t are two symmetric, zero trace tensors and if

6 is a viscosity stress tensor for some fluid velocity Uj» then

and
s 43
Qe,r) = 5 f 84 Tij d'x
Qf |
__1 3 1 (2.9)

f

Eq. (2.9) is a Green identity which follows easily from an application of the
divergence theorem; the infinitesimal surface element is ds and n; is the
j-th component of the unit oufward normal. |

Now define two comparison tensors 8° and t° which satisfy the

followiny conaitions:

egj = u(ug’ it ug' ;) ineg (2.10)
where u? satisfies u? i = 0 (because of the zero trace property of
9
e°) and '
° _ _ r ' (2.11)
u, = 0 on I ’



while

T3, 5 =Pyi din 2 (2.12)
and o

o o . ' .
Ty = I 1 +p Gij on PE. (2.13)

J

Consider symmetric, zero trace tensors 6 and T such that 6 satisfies
(2.10) and (2.11) for some velocity field Ugs not necessarily u;, and
that, like 1°, T also satisfies equation (2.13) and another of the form

(2.12) for some scalar p instead of p°. Then it follows from (2.9) that
Q(e-6,t-1) = 0 | | (2.14)

for all such @ and t. Thus, the tensors 6 - 6° and_t - T° are

orthogonal with respect to Q.
With these definitions, we may now formulate two reciprocal [17]

variational problems

Q (6 -1, 0 - 1°) = minimum ._ : (2.15)

and

Q (t - 6° T - 6°) = minimum. (Z.iﬁ)

After eliminating known guantities, these two principles reduce to |

q(e, ©) -,%,f rEui Iyg nyds = minimum (2.17)

and

Q(t,T) = minimum, : o (2.18)



subject to the admissibility conditions (2.10) - (2.11) and (2.12) - (2.13)
respectively. The absolute minimum for both (2.17) and (2.18) is achieved by
the symmetfic tensor ¢ = @ = t where o satisfies (2.1) - (2.6).
Furthermore.'it is worth remarking that the admissibility conditioné for one
principle are thé variational (or Euler) equations for the other and vice :
versa. |

The first variational principle (2.17) is associated with the name of
Helmholtz [11], L22]. This principle is difficult to apply in problems with
random geometry because of the no slip condition (2.11) on the trial stress
fieids 8. A trivial but neverthe]es; admissible choice of trial velocity
field is u; = 0 everywhere. This chéice places an upper bound of zero on
the right hand side of (2.17). The general form of the minimum may be

" determined when & = ¢ and u; = vy Then, since it is straightforwara

to show that

Q. o) =2 vin:jnjds, (2.19)
Te

we find the minimum is given by

- é—] vini;njds = minimum. (2.20)
re :

For the slab geometry, L,.=-p, ‘iJ on the two bounding

J +
planes. Thus,

1 ° _ A



where the surface r, is the plane with pressure P,. We have used fluid
incompressibility in simplifying (2.21); the volume of fluid flowing into the
volume 8, across one plane must be matchea by the volume of fluid flowing

out of 8. across the other plane. Furthermore, the macroscopic flow Uz

is aefined by

u, = ‘r+ vinids/A o . | (2.22)

where, for an isotropic porous material with porosity (void volume fraction)
¢, A is total area of a cross section of the porous medium and the volumes
are given by 8 = AAz and 2, = ¢a. Thué, in terms of macroscopic

quantities, (2.20) becomes
+7 U, = minimum, (2.23)

Now Darcy's law states that

%; ' (2.24)

Tix

Uz=..

where k is the permeability so (2.23) becomes

-'5‘- (%;)2 = minimum _ - (2.25)

for the variational problem (2.17). The zero upper bound on (2.24) implies a

zero lower boun& on k.

The minimum for (2.18) follows from the preceding arguments 'b-y' taking <

=o. Then, we find
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Q(t, ) 2 Q(o, o) =% (ﬁ'i)z. (2.26)

Thus, the variational principle (2.18) may be rephrased as the statement that,
of all symmetric, zero trace tensors t satisfying the admissibi th
conditions (2.12) and (2.13), the unique choice T = o where o satisfies i
(2.1) - (2.6) giveé the minimum energy dissipation in the fluid. This
princfple is the'fluid-dynamical version of Castigliano's principle for the
equilibrium of an isotropic elastic body while the.principle (2.17) is the
fluid version of the principle of miﬁimum potential energy in elasticity. The _%
problem (2;18) is preferred for viscous flow because a large class of trial
stress distributions is easily constructed as we will show in the nexf section.
To complete the formulation of the variational principle for Darcy's
constanf. some method of introducing information about the random géometky of

thé pore space must be provided. Following Prager [11], we introduce the

stochastic function

g(x) = { '] 1ff =% (2.27)
0if x ¢ Q.
and the volume average
w>=dpoe . (2.2)
Then, the quadratic form Q becomes
(2.29)

Q(TD T) = %'fg TiJTiJ > .

Comparing (2.26) and (2.29), we see that it would be advantageous to express :

the pressure gradient in terms of the trial stress. Such an expression may be i

obtained using the'admissibility conditions (Z.iZ) and (2.13). First, define
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the macroscopic pressure gradient

- AP
G; = 83 3z~ (2.30)
Then, consider
=1 3
94,5 0 Iﬂf Tij’jd X 231

= 3]; J‘I.E nypds + ?]i J‘I.I njeds.
Since the trial stress distribution satisfies (2.13) and since the trial

pressure field p = p° on Tg, we have

P, P
G fp 0yt = &3 {320 Iy ds = 48;. (2.32)
Furthermore, since Ty = 0 on rE' the divergence theorem gives
-]-J' Tis .d3x=l,r T, N.ds (2.33)-
2 "Qe"13,J a-°rp M3
so the normalization condition may be expressed as
L (2.34)

Eq. (2.34) is the correct normalization on a general trial stress t. This
normalization is the same one used by Heissberg'and Prager [19] but it differs

from the one used originally by Prager [11]. Ramifications of the switch from

the erroneous normalization to the correct one have been discussed by Berryman
and Milton [20]. Using (2.26), (2.29), (2.30), and (2.34), the variational
principle may now be written as

1
k<3 <g-rij-rij>/ Gy 6y - (2.35)

As a final check on the variational principle, we perform a first variation of
(2.35). As formulated using (2.34), the variation of the denominator vanishes

identically. The variation of the numerator is

§ < 9T Ty5> = 2 < gy stijs. (2.36)
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If Tyy = M (“i,j + "j,i) for some vector Wi then it follows

easily that

< g-ri-j&t” > = ?ZI-E II‘ w,(sr” - &p 6”) njds -(2.37)

' +-2-EJ' w Gp-dax
* Q nf i,1
The zero trace property of Tij guarantees that Wi 5 =0 in nf so, if
]

we define nij = 'bcij + Tij, then

4

4 o
+—§ fl.'s W sn_ij ngds .

The second surface integral in (2.38) vanishes because n;j is specified

on the externél boundary. The variation (2.34) therefore vanishes if w; = 0

on TI since the variations 6“11 may be arbitrary there. Thus, the

ratio in (2.35) is stationary if the admissible trial stress t satisfying
(2.12) and (2.13) also satisfies (2.10) and (2.11). A second variation of

(2.35) produces a positive result; hence, the stationary point is in fact a

minimum.
This calculation concludes the formulation of the variational principle.

The next section discusses methods of choosing useful trial stress

distributions.
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3. Trial Stress Distributions

Trial stress distributions t for the variational bound (2.35) on Darcy's

constant must satisfy the following admissibility conditions:

Tis = Tags | (3.1)

1 Ji®

Tk = 0s (3.2)

Tij,5 =04 N A (3.3)
(-] (- .

and

- : AP :

We may replace the admissibility condition (3.3) by the equivaTent condition

mik Tij,5k = 0. _ ;. | (3.6)

In (3.0), € nik is the Levi-Civita symbol (defined to be zero if any two of
the inaices are equal ana either +1 or -1 for even or odd permutations of 123)
so (3.3) has been replaced by the statement that the curl of a gradient
vanishes identically. The principal effect of (3.5) is to show that r ana o
must be correlated with the stochastic function g and the unit outward normal
vector Ny However,.the required correlation of g.and t is not a very

stringent condition; many examples of suitable choices for ¢+ could be listed

including various functions and functionals of g.
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The most serious difficulty with the application of the variatjonal
principle is incbmplete knowledge of g. In computer experiments on flow
through random aggregates, it is possible to have as much information as
desired about the stochastic function. In any other circumstance of practical
interest, we_§hou1d assume from the outset that only limited know1édgé of the
statistical properties of the porous medium will be available and design our
trial functions to use the information at hand. Prager [11] provided one

solution to this problem by introducing the trial stress distribution
uy(X) = £ Ty (F) h (K +7) o, | (3.7

where Tij is a deterministic tensor and h is some stochastic scalar and the

integral is over all space. The deterministic part of this functionil Tij(?)

may then be required to satisfy

Tek = 0 ' ' (3.9)
and
Tij,3 = ¥4 (3.10)

for some deterministic scalar function ¥ or equivalently

in order to guarantee satisfaction of (3.1), (3.2), and (3.6). Prager made
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the particularly simple choice

h(X) = g(X) o (3.12)
for the stochastic scalar; however, we will show in the following sections
that other choices of h are both possible and preferable in some cases. Along
with the choice (3.12), we make the assumption that g (I) may be extended
outside the volume Q so that the integral in (3.7) may be evaluated. A
periodic extension of g is concéptua]ly simple but undesirable because of the
long range order introduced this way. A superior choice of_extension is to
assume that other samples are drawn from the same ensemble as g and afranged
to fi11 all space. This extension causes no conceptual or practical
difficulties as we will see. The boundary condition (3,4) on I't will be
satisfied by (3.7) if we'assume the microstructure of the porous medium is
much smaller than the macroscopic scaie of the slab.

Using linearity with respect to the applied pressure gnadient and the
symmetric nature of T from (3.8) while assuming that the medium is isotropit,
Prager obtained the general form of the deterministic function. In general,

this result becomes

Tij (F) = {a(r) [rj61 + riﬁj]

(3.13)
+ B(r)Gkrkrirj + -1(r-)(5kr'k61‘j 1.
The scalar functions a, B, and y depend only on the magnitude r =
IFl. The tensor (3.13) will satisfy (3.9) if
] e 2 o |
v(r) = - 3 [2a(r) + r® (r)]. (3.14)
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T will also satisfy (3.11) if, for i = k,

0 = Tij,jk = Tkj,ji ) (3.15)
]

.n h . [
= += -5 -8 ) (& - §ry).
Thus, we find that

NGO R N o I | (3.16)
or equivalently that '
rsa(r) = rt %{l + const. _ ' (3.17)

Except for the constant appearing in (3.17), 8 and y are completely
determined by (3.17) and (3.14) once a functional form for a has been

chosen. Several choices for the function a will be discussed in Section 5.

The constant in (3.17) is fixed by the normalization condition (3.5). To

see this, substitute (3.13) into (3.10) and note {20] that a solution for ¢ is

v (F) = Gkrk[r%-,.m +La(r) - +rie(rl. . (3.18)
Furthermore, the trial pressure fieldp is gilven.by
o(k) =f ¥(F) h (x+F) d*r. | (3.19)
Atter some simpslification, we find [20] that (3.5) becomes
J rLTyyF - 'G"ij];igri(r) | .20
= 46

where Sz(r) is the two-point (auto-) correlation function of g(k) satisfying

$2(0) = ¢ and Sp(=) = ¢2. Then Eq. (3.20) reduces to the statement that

ds,(r)
-:';-I &3r r2[r8(r) - d:"(.r)] <21r :
in (3.21)
=--3—¢(1-¢) const = ¢ '
using (3.17). So the constant in (3.17) is just
.3 (3.22)

const = - w0
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4. Phase Interchange Relation

In this section, we will use the flexibility in choice of stochastic
function in (3.7) to derive a phase interchange relation for permeability. By a
phase interchange relation, we mean any equaiity or 1nequality'wh1Ch applies to
a sum or broduct of the effectiQe constants when the geometry of the material is
held fixed but the roles of the constituents are interchanged. Keller [23]
derived such a phase interchange equality for the products of conductivities of
two-phase composites in two dimensions. Keller's results were generalized to an
inequality for products of conductiyities of two-phase composites in three
dfmensions by Schulgassef [24]. We will derive an inequality for a linear
combination of the permeabilities for a porous medium and its complement.

The complementary medium has the saﬁe geometrical structure as the original
medium but the Tocations of solid and void are interchanged. The mathematical

consequence of tﬁis interchange is that the stochastic function g for the

\

complement is
g(x) =1 -g(x) (4.1)

if the stochastic function g for the original medium is given by (2.27). -
Using the bar to distinguish properties of the complementary medium, we find

easily that the porosity of the complement 1is

$=1-0¢ | C (a2)

and we define the complementary'permeability to be K.
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Now it will prove to be 111umiﬁating to consider trial stress

distributions of the form (3.7) for the original porous medium with either of

two choices for h
m (%) = g(%) o . )
or
hy (k) = §(%) - o (a.9)

and for.Tij we choose the (so-called) constant trial function given by (3.17)

withe = 0. Making these substitutions into (2.31), we find that the results

depend on certain spatial correlation functions of the form
&™) () = <g (o, Gt | . (a.5)
and

M%) = <glm, (o, (5D | (4.6)

The two variational bounas associated with the (4.3) and (4.4) are then

k< HT,J('Y‘)T,JTS)C:(,'") G's'.s)dardas/zq‘q( - (4.7)

for m=1 and'z.

Two important identities follow for (4.3) - (4.6):

2 = - ) (4.8)
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and

k3 =0 - V) - V%) + s, e

1f we substitute (4.9) into the numerator of (4.7) for m = 2, we find that the .
tirst three terms on the right hand side of (4.9) do not contribute to the

double integral if Tij is of the form (3.13) since it is easily shown that
f Tijﬁ')d3r =0 . | (4.10)

The pnysical significance of (4.10) is that the mean stress deviations must
vanish <'ij’ = 0 since the system as a whole is not being sheared.

Thus, the numerators of both bounds are equal and the bounds for either choice
(4.3) or (4.4) are the same. This result shows that the bounds depend most

strongly on the arrangement of the internal surface which is identical for the

sample and its complement.

Now consider the related spatial correlation functions

UM ) = <alon, Gt (4.11)
and | |
t{™3) = <glom, G, (xi5h. o (4.12)

Then it is straightforward to show that

o - o e
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and
i #,2) + c{M(E,E) =y (BFIn, (B3>,
ssé'“)(l'r‘-il) . - | ~ (4.14)

Using (4.13), the phase-interchanged version of (4.7) beches

K< (%)2 ) j('g)'C3('F,'§)d3r d%s/26,6, C (a8)
where we have accounted for the difference in normalization constant by the
factor preceding the integral. Md]tiplying (4.15) by (&/E)z..adding the result
to(4.7) and using (4.14), we have |

2 - ' 0
k + (%) K< ¢ Iy j(F) Tij(g) sg_")(l?-?l)d?‘r d3s/zsk6k-_ - (4a8)

-The inequality (4.16) is a phase interchange relation for this linear :
combination of the permeability k and its complementary value K.

To begin analyzing (4.16), first notice that this upper bound depends only
on two-point spatial correlation functions. Next notice that, since both
contributions to the left hand side of (4.16) are strictly posftive, we may
eliminate either term and still have a valid upber bound on the remaining
term. Thus, in (4.7) Cgm) may be replaced by ng) while maintaining
the validity of the inequality. Such a replacement has some advantages for
practical applications because two-point spatial correlation functions are

more easily measured or computed than three-point correlations.
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The two-point upper bound in (4.16) is not a new result. .Prager [nj
showed that, since g<1, the factor of g in the numerator of (2.35) can be
replaced by unity and still have a valid bound on Darcy's constanp. The
result is |

k 5_ <'t.ij'r.'].‘.j>/2(-‘ak(-ik . (4.17)
which has the same right hand side as (4.16). The.new result (4.16) therefore.
shows that the bound (4.17) must be a poor estimate of k 1f kK is finite. If ¢
is large, then it will often be the case that there are no connecting paths
through the particle-phase; then the'permeability'E for the interchanged )
problem will vanish identically. Thus, it is ﬁossible for (4.17) to provide a
good estimate of k when ¢+1, as has been observed in numerical
calculations [13-15, 20]. Similarly, if ¢ is small, then it is possible
that no connecting paths through the void-phase exist; then the permeability k
will vanish identically. But (4.16) shows that the right hand side of (4.17)
is bounded away from zero even when k = 0 because k will be finite (and large)
in this limit. This argument shows why the two-point bounds (4.17) (which are

evaluated numerically in the next section) provide such bad estimates of k at

low porosities.
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5. Two-Point Bounds

~ Attention will now be restricted to two-point baunds to provige some
elaboration of the results on the phase interchange relation (4.16). It has
been shown elsewhere [20] that the best possible two-point bound obtainable

using the trial stress distribution (3.7) with (3.12) has the form
k< 2 rodr risy(r) - ¢21/014)% o (5.1)

where S, = §§]) defined in (4.14). The relation (5.1) was found by noting
that, if ;he aeterministic function Tij is alloﬁed to vary ovef the entire class
of admissible tensors, the smallest value of ]/2<1ijtij> is the right hand
side of (5.1).

To permit- the evaluation of (5.1), the discussion must aisq bq'limiggqlﬁo' 5
a particular kind of random geometry fpr which the various two-poihf sﬁafiéT:. E"
correlation functions are known. Until such data become available for real %
materials [16], we are essentially limited to two types of model materials:

(1) random packings of impenetrable spheres and (2) random assemblages of
penetrable spheres. Two;point bounds for impenetrable-sphere packs ﬁave been
discussed in L14]. For the present discussion, we restrict our analysis to
the penetrable sphere model. | '

The penetrable sphere model assumes that particle centers are distributed
randomly in the volume @ and that each center is surrounded by a sphere of
particle material. In the simpiest version of this model, all thése spheres
nave the same radius R. If the density of particle centers is great enough
‘and the sphere radius large enough, at least some and in general many of these E
spheres will overldp. This model has the distinct advantage that aﬁalytica]

results are known for all the spatial éorrelation functions of interest

-[12,15,25-27].
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Since the particle centers are uncorrelated, 1t is not difficult to show

[25-27] that the general result for an n-point void correlation functibn is

Sp(RpaeeesXy) = 9R)GR ). gk _g)> = exp(-pV,) (5.2)

where p is the number deﬁs1ty of spheres and V, is the union volume of n spheres

with the fiked radius R and centers at the vertices ;1""’ 35_]. The union

volume for one sphere is jﬁst
3 (5.3)
so the porosity is given by

¢ = -s, - exp(-p 3703, T (5.a)

For two spheres, the union volume is found to be

3
VZ(CR)/R3 = ('_4—“3 (1%;- fg) for <2 (5.5)
Q% for 7>2

and S, follows from (5.2).
The results of computationﬁ using the penetrable sbhere model to provide

the data needed for the two-point correlation functions are summarized in

Table I and Figure 1. For comparison, the analytical result of Weissberg and

Prager [19] that

ks-§% & (5.6)

is also shown in Figure 1. The inequality in (5.6) was derived for the
penetrable sphere model using the same variational principle discussed in
Section 2, but a different trial function which takes advantage of the

symmetries inherent in assemblages of penetrable spheres.
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Also shown is the low density expansion for the permeability of an assemblage

of hard spheres [6-8]

2 .
k =% %[1 +/-:'l—2_ nl/2 +%%§q1nn + 16.5n + ... "] (5.7)

where the solid volume fraction is n=l-¢.

Table I and Figure 1 show that the result of Weissberg and Prager is
somewhat superior to the two-point bound of Prager.fof the penetrable sphere
model. Houevef; two distinctions should be stressed: (1) The variational
bound (5.1) is valid for any isotropic porous solid whefeas (5.6) 1s valid
only for the penetrable sphere model. (2) Because the derivation of .(5.6)

differs significantly from that of (5.1), it cannot be siid that (5.6) is a

"two-point bound®. Indeed the derivation of (5.6) avoids the introduction of .
the spatial correlation functions altogether. Unfortunately, the trick which .
leads to (5.6) appears to work only for the penetrable sphere model, so (5.1)

appears to be the best general bound on permeability uﬁing the 1imited

information in the two-point correlation functions.
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6. Discussion

As a final example of the versatility of the variational principle '(2.35).
consider two porous media with stochastic functions f and g whose porosities

are respectively

<f> = ¢, and<gp =4 - ' (6.1)

Then, if we define the right hand side of (2.35) to be kg(-r ), we have

Now suppose that the stochastic functions of these two materials are related

by ihe inequality

f(x) > g(x) for all%, | (6.3)

so the material characterized by f is more porous than the one for g; in
particular, the material with stochastic function g is obtained by adding more
solid material to the other one without rearranging the original material.

Then, it is clearly true that

<gtijtiJ>$<frijtiJ> (6.4) .

for any given trial stress distribution x. Substituting (6.4) into (6.2)
and defining ke(r) as the right hand side of (2.35) with g replaced by f,

- 26 -



racesn - p— - -

we find J
FUCPE e

where k 1s the actual permeability for the material characteriiéd byg. - _'
The inequalities in (6.5) are true for any fixed t. In particnlaf,'ifgz;i'ﬁ”f

T =0 where Op minimizes kf. then
k < kg (og) < kelog)s (6.6)

Similarly, if og'minimizes.kg, then

k = kg (og) < ke (cg). (6.7)
Thus, it follows from (6.6) and (6.7) that
k = kg (Og) < kg (Of) < kf (Uf)- (6.8)

This argument shows that, if one porous material differs from a more porous

one only by the addition of solid material (with no rearrangement of tﬁe pth@r.

material), then--as one might expect intuitively--the permeability of the more

porous material is always greater than or equal to that of the less porous one.
The inequalities in (6.5) have other practical consequences. If we usé' :.

the same trial function t for two probleﬁs with f and g related by:(6.3),

then the bound obtained for the more porous material will be a valid.bounq for

the less porous one. This relationship is observed to be satisfied by the

examples in Table I for the penetrable sphere model. Specific representations

of the penetrable sphere model can satisfy (6.3) very easily by Ehoosing a
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particular set of sphere centers and letting the radii of the overlapping

spheres satjsfy Rf < R_ for the two cases. Thus, (6.5) is a useful

check on our numerica]gintegration method and also guarantees that the curves
in Figure 1 will decrease monotonically as observed.

In conclusion, the main new result of thé present work is the observation
that the stochastic function h appearing in the trial stress di;tribution
(3.8) can take a variety of forms. We have used the freedom'in choosing both
the deterministic function Tij and the.stochastic function h in (3.8) to
obtain several new results. A phase interchange relation for a linear
combination.of the permeability and its complementary vaiue was obtainea in
(4.16). A proof of the monotone properties of the bounds was given in (6.8).
Numerical comparisons of bounds on permeability were made for the penetrable

sphere model when the 1imited geometrical information contained in the

two-point spatial correlation functions is available. Future developments in

the theory will require knowledge of three-point and possibly higher order

spatial correlation functions.
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n kyp/RE kol B
0.1 1.898E+00 2.329E+00
0.2 7.967E-01 1.001E+00
0.3 4.361E-01 5.611E-01
0.4 2.610E-01 3.443E-01
0.5 1.603E-01 2.170E-01
0.6 9.701E-02 1.348E-01
0.7 5.537E-02 7.885E-02 |
0.8 2.761E-02 4..009E-02
0.9 9.651E-03 1.395E-02
Table I. Values of the upber bounds on permeability due to Weissberg and

Prager (kHP) and due to Prager (kP). The corresponding formulas in the

text are respectively (5.6) and (5.1).

-33 -




Figure 1.

Figure Caption

Comparison of Prager's two-point bound. (boxes and solid line) to
Weissberg and Prager's analytical bound (long-dash/short-dash 1ine)
for penetrable spheres and to the low density expansion for hard
spheres (dashed 1ine) as the porosity ¢ or solid volume fraction

n = 1-¢ varies. "The corresponding équat1ons in the text are
respectively (5.1), (5.6), and (5.7). Some numerical values are

also listed in Table 1.
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